Exact Quantum Dynamics Calculations of Large Dimensional Molecules Using Phase Space Basis Truncation

> Thomas M. Halverson Department of Chemistry University of Waterloo 23-9-16

- I. Introduction
- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

I. Introduction

- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

what do we mean by exact?

>> Solve The time independent
 Schrödinger equation

$\widehat{H}|\Psi\rangle = E|\Psi\rangle$

>> Born-Oppenheimer Approximation
>> Bound States
>> Rovibrational Spectroscopy

>Numerical diagonalization via a basis set expansion

$$\widetilde{H}_{mn} = \left\langle \Phi_m \middle| \widehat{H} \middle| \Phi_n \right\rangle$$

In general, all quantities of interest can be computed from the eigenenergies and eigenfunctions

>> Three basic steps to EQD

- 2. Choice of basis set
 >> Direct product basis set
 >> Symmetry
 >> Curse of Dimensionality

>> Three basic steps to EQD 1. Choice of potential energy $V(x) = Ax^4 + Bx^3 + Cx^2 + Dx$

2. Choice of basis set

>> Phase space truncated momentum
 symmetrized Gaussians

>> Correlated energy truncated
 harmonic oscillator states

3. Choice of diagonalization method

>> Direct diagonalization using Lapack and Scalapack libraries

/work/01922/thalvers/intro
>> Exponential scaling $\widetilde{H}_{mn} = \langle \Phi_m | \widehat{H} | \Phi_n \rangle$ Direct Product Basis (DPB) $|\Phi_{\{I\}} \rangle = |\phi_{n_1} \rangle \otimes |\phi_{n_2} \rangle \otimes ... \otimes |\phi_{n_D} \rangle$

For a DPB, the size of the Hamiltonian matrix grows exponentially with the dimensionality (D) of the system

/work/01922/thalvers/intro >> Basis truncation N: Total number of basis function used in the Hamiltonian expansion K: Number of converged states produced by a given calculation Basis Efficiency: $\epsilon = \frac{K}{N}$

Problem specific criterion for increasing the basis efficiency by decreasing N but maintaining K

>> Basis truncation 1. Symmetrized Gaussians >> Well localized in phase space Phase Space Truncation: $H(q_1, p_1, \dots, q_D, p_D) \leq E_{\max}$ 2. Harmonic Oscillator >> Direct analogy to excitation energy Energy Truncation: $\omega_i^{\mu} n_i \leq E_{\max}$

I. Introduction

- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

I. Introduction

- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

How do we connect phase space and basis truncation?

/work/01922/thalvers/theory >> Wigner-Weyl formalism Density Operator: $\hat{\rho}_K = \sum_{i=1}^K |\Psi_i\rangle\langle\Psi_i|$

Weyl transformation: $\hat{\rho}_K \rightarrow \rho_K(q_1, p_1 \dots q_D, p_D)$

The density operator for a given Hamiltonian defines a Wigner PDF. That PDF defines a phase space volume: \mathbb{R}_{K}

/work/01922/thalvers/theory >> Wigner-Weyl formalism Density Operator: $\hat{\rho}_K = \sum_{i=1}^K |\Psi_i\rangle\langle\Psi_i|$

Quasi Classical Approximation: $\rho_k^{QC} \approx \Theta[E_{\max} - H(q_1, p_1 \dots q_D, p_D)]$

/work/01922/thalvers/theory >> Wigner-Weyl formalism Density Operator: $\hat{\rho}_N = \sum_{j=1}^N |\Phi_j\rangle\langle\Phi_j|$ Weyl transformation: $\hat{\rho}_N \to \rho_N(q_1, p_1 \dots q_D, p_D)$

The density operator for the representational basis defines a Wigner PDF. That PDF defines a phase space volume: \mathbb{R}_{N}

How do we design a basis set from localized functions?

>> Phase space wavelets
>> Generated from some two-parameter
function: fmn(q)

>> (m,n) are discretized parameters
 that result from transformations
 of the (m=0,n=0) fiducial
 function: f₀₀(q)

The Weyl-Heisenberg Lattice • • $(3/2\Delta, 1/2\Delta)$ • • . • • • • • •

Progre

>> Doubly dense Von Neumann lattice

The Von Neumann wavelet used on the Weyl-Heisenberg lattice

$$g_{mn}^{(2)}(q) = \pi^{-1/4} e^{-\frac{1}{2}(q-m\Delta)^2} e^{in\Delta q} e^{-\frac{1}{2}imn\Delta^2}$$

The (2) superscript denotes double density: $\Delta^2 = \pi \hbar$

>> Doubly dense Von Neumann lattice

The Von Neumann wavelet used on the Weyl-Heisenberg lattice

$$g_{mn}^{(2)}(q) = \pi^{-1/4} e^{-\frac{1}{2}(q-m\Delta)^2} e^{in\Delta q} e^{-\frac{1}{2}imn\Delta^2}$$

Pros: Collectively local and complete Cons: Linearly dependent

>> Momentum Symmetry

>> Majority of physical systems
 have momentum symmetry

>> Create new set from linear combinations of +n and -n critically dense Gaussians >> This process is many-to-one

>> Momentum symmetrized, doubly dense Gaussians

 $\phi_{mn}(q) = \frac{1}{\sqrt{2}} \left[e^{\frac{i\pi}{2}(nm+n+1)} g_{mn}^{(2)}(q) + e^{-\frac{i\pi}{2}(nm+n+1)} g_{m(-n)}^{(2)}(q) \right]$

$$\phi_{mn}(q) = \left(\frac{4}{\pi}\right)^{1/4} e^{-\frac{1}{2}(q-\sqrt{\pi})^2} \sin[n\sqrt{\pi} - \frac{n\pi}{2}(2m+1)]$$

Defeats exponential scaling

But what about non-localized basis functions?

>> Phase space based energy
truncation

>> PST has no application to
 functions that are not localized
 in phase space

>> We must look at the Wigner PDF's
 directly

>> Phase space based energy truncation

Harmonic oscillator basis functions are amenable to Energy Truncation: $\sum^{D} \omega^{\mu}_{i} n_{i} \leq E_{\max}$

How do we choose the coefficients?

>> Phase space based energy
truncation

Two obvious choices:

1. Set μ to zero

2. Set μ to one

Position Projection of 2D Wigner PDF

Position Projection of 2D Wigner PDF

>> Phase space based energy
truncation

Two obvious choices:

1. Set μ to zero

2. Set μ to one

If choice 2 is so much better, why ever choose 1?

>> Phase space based energy
truncation

Two obvious choices:

 \rightarrow 1. Set μ to zero

2. Set μ to one

Conclusion: For N>>K, low efficiency but high accuracy, choose 1

>> Phase space based energy
truncation

Two obvious choices:

1. Set μ to zero

- \rightarrow 2. Set μ to one
- -> 3. Both

Conclusion: For N~K, high efficiency but low accuracy, choose 2

>> Hybrid truncation

>> The eigenvalues approach the correct solution from above

>> The lowest lying eigenvalue from any calculation for a given state index is the most correct

>> Hybrid truncation

- I. Introduction
- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

- I. Introduction
- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

>> Features

>> Two separate basis sets >> Symmetrized Gaussians >> Harmonic Oscillator >> Dimensionally independent >> Tested from D=2 to D=30>> Highly parallel >> Scales up to 7000+ cores >> Easy to use >> User only needs to provide FFP

>> Issues

>> Accuracy
>> only ~2% (~10 cm⁻¹)

>> Potential Energy
>> Limited to FFP's

>> Scaling
>> Non-parallel modules

>> Issues

>> Accuracy
>> only ~2% (~10 cm⁻¹)

>> Potential Energy
>> Limited to FFP's

>> Scaling
>> Non-parallel modules

>> Issues

>> Accuracy
>> only ~2% (~10 cm⁻¹)

>> Potential Energy
>> Limited to FFP's

>> Scaling
>> Non-parallel modules

>> Issues

>> Accuracy
>> only ~2% (~10 cm⁻¹)

>> Potential Energy
>> Limited to FFP's

>> Scaling
>> Non-parallel modules

- I. Introduction
- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

- I. Introduction
- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE

V. Model Systems

VI. Diphosphorous Oxide (3 atoms)
VII. Methyleneimine (5 atoms)
VIII. Acetonitrile (6 atoms)
IX. Benzene (12 atoms)
X. Finals thoughts

>> Coupled Anharmonic Oscillators

4th order FFP in normal mode coordinates: $H = \sum_{i} \omega_i (p_i^2 + q_i^2) + \sum_{ijk} \phi_{ijk} q_i q_j q_k + \sum_{ijkl} \phi_{ijkl} q_i q_j q_k q_l$

 $\omega_i = 1$; $\forall i$ $\phi_{ijk} = 0$ $\phi_{iiii} = \alpha_i$ $\phi_{iijj} = \beta_{ij}$

>> P₂0 (D=3)

4th order FFP in normal mode coordinates: $H = \sum_{i} \omega_i (p_i^2 + q_i^2) + \sum_{ijk} \phi_{ijk} q_i q_j q_k + \sum_{ijkl} \phi_{ijkl} q_i q_j q_k q_l$

>> 18 potential energy terms
FFP: C. Pouchan, M. Aouni, and D. Bégué, Chem. Phys.
Lett. 334, 352(2001)

$v_0 = 197$ cr	n-1 V8000	= 11683 cm ⁻¹					
P ₂ 0: N1=201414, N2=405522							
Accuracy cm ⁻¹	к	K/N					
150	34252	17%					
40	1527	7.6%					
15	8869	4.4%					
4	2981	1.5%					
0.15	33	0.016%					

>> All states computed using SG's only

>> CH_2NH (D=9)

4th order FFP in normal mode coordinates: $H = \sum_{i} \omega_i (p_i^2 + q_i^2) + \sum_{ijk} \phi_{ijk} q_i q_j q_k + \sum_{ijkl} \phi_{ijkl} q_i q_j q_k q_l$

>> 159 potential energy terms FFP: C. Pouchan, K. Zaki, J. Chem. Phys. **107**, 342(1997)

$v_0 = 1212$	cm ⁻¹ V ₅₀₀₀	- 799269 com ¹¹				
CH ₂ NH: N1=212197, N2=409582						
Accuracy cm ⁻¹	к	K/N				
150	5242	2.5%				
40	149	0.7%				
15	531	0.25%				
4	79	0.04%				
0.15	4	0.0019%				
>:	> All states comp	uted using SG's only				

>> CH_3CN (D=12)

4th order FFP in normal mode coordinates: $H = \sum_{i} \omega_i (p_i^2 + q_i^2) + \sum_{ijk} \phi_{ijk} q_i q_j q_k + \sum_{ijkl} \phi_{ijkl} q_i q_j q_k q_l$

>> 311 potential energy terms
FFP: D. Bégué, P. Carbonniere, C. Pouchan, J. Phys.
Chem. A. 109, 4611(2005)

 $>> C_6 H_6 (D=30)$

4th order FFP in normal mode coordinates: $H = \sum_{i} \omega_i (p_i^2 + q_i^2) + \sum_{ijk} \phi_{ijk} q_i q_j q_k + \sum_{ijkl} \phi_{ijkl} q_i q_j q_k q_l$

>> 1022 potential energy terms
FFP: A. Willetts, N. C. Handy, W. H. Green, and D.
Jayatilaka, J. Chem. Phys. 94, 5608(1990)

	n-1 // 60000	$_{00} = 6908 \text{ cm}^{-1}$				
C ₆ H ₆ Hybrid						
Accuracy cm ⁻¹	к	K/N				
150	2688280	96%				
40	1835	66%				
15	534638	19%				
4	316	0.0004%				
0.15	0	0.0%				
rogress						

>> Symmetry

>> Benzene has D_{6h} point group
 symmetry

>> HOB functions have parity
 symmetry

>> Three of the operations
 transform the basis functions
 with even/odd parity
>> Result: 8-Fold reduction in N

			-y 7	
Index	Label	Willetts*	$N \sim 0.7M$	$N \sim 0.35M$
				Δv_i (Cm -)
1	V ₁₈	1058	1040.98	0.53
2	$v_4 + v_{16}$	1125	1111.178	0.21
3	v ₁₅	1167	1147.751	0.47
4	$v_{10} + v_{16}$	1273	1260.279	0.59
5	$v_{10} + v_{16}$	1273	1260.781	0.41
6	V ₁₄	1318	1315.612	0.29
7	$v_{5}+v_{16}$	1418	1377.769	0.57
8	v ₁₉	1512	1496.231	0.23
9	v ₁₀ +v ₁₁	1552	1525.564	1.4
10	$v_{6}+v_{12}$	1637	1624.036	0.18

Progress... J. Chem. Phys. 94, 5608(1990)

- I. Introduction
- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE

V. Model Systems

VI. Diphosphorous Oxide (3 atoms)
VII. Methyleneimine (5 atoms)
VIII. Acetonitrile (6 atoms)
IX. Benzene (12 atoms)
X. Finals thoughts

- I. Introduction
- II. Theory
- III. The Phase Space Picture
- IV. SwitchBLADE
- V. Model Systems
- VI. Diphosphorous Oxide (3 atoms)
- VII. Methyleneimine (5 atoms)
- VIII. Acetonitrile (6 atoms)
- IX. Benzene (12 atoms)
- X. Finals thoughts

/work/01922/thalvers/final_thoughts

>> Summary

>> The phase space picture is an
 invaluable tool

>> Black-box EQD software is
 possible

>> SwitchBLADE is a robust
 platform

>> Hybrid Truncation allows for high accuracy and high efficiency

/work/01922/thalvers/final_thoughts

>> Still more to do

- >> Generalized Hamiltonians
 >> Rovibrational states
 >> Scalable quadrature

>> Iterative methods
>> Better scaling diag routines
>> ScalIT
>> EOF >> Questions?

Progress...