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thermodynamic system at a constant 
temperature and pressure

• Equilibrium constant

• Molecular-scale systems

Thermodynamics

Quantum Thermodynamics



4

Partition function:

Quantum Thermodynamics

Quantum Thermodynamics



4

Partition function:
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Exact solutions are hard to obtain

Common approximations
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• N2 geometry optimization and vibrational frequency
▫ Options: ground state, DFT, B3LYP, cc-pVTZ

N2 Gaussian calculation

Ochterski, Joseph W. "Thermochemistry in Gaussian." Http://www.gaussian.com. Gaussian, Inc., 19 Apr. 2000. Web. 
<http://www.gaussian.com/g_whitepap/thermo.htm>. 

Quantum Thermodynamics

http://www.gaussian.com/g_whitepap/thermo.htm
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• Steps that Gaussian takes to calculate thermodynamic properties
1. Translational contribution - Ideal gas approximation

2. Electronic contribution – only ground state is accessible and E0 = 0

3. Rotational contribution – rigid rotor approximation

4. Vibrational contribution – harmonic oscillator approximation
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N2 Gaussian calculation

Z ln(Z) E
(KCal/Mol)

Cv

(Cal/Mol-Kelvin)
S 

(Cal/Mol-Kelvin)

Electronic 1.000 0.000 0.000 0.000 0.000

Translational 0.583E+07 15.578 0.889 2.981 35.924

Rotational 51.266 3.937 0.592 1.987 9.811

Vibrational 1.000 0.007E-04 3.502 0.002 0.000

Total 0.299E+09 19.514 4.983 4.970 45.735

NIST source 45.7957 ± 0.001

NIST Computational Chemistry Comparison and Benchmark Database, 
NIST Standard Reference Database Number 101 
Release 17b, September 2015, Editor: Russell D. Johnson III 
http://cccbdb.nist.gov/ 

Temperature Pressure

298.15 K 1 Atm.

45.7957 ± 0.001

Quantum Thermodynamics



8

N2 Gaussian calculation

Z ln(Z) E
(KCal/Mol)

Cv

(Cal/Mol-Kelvin)
S 

(Cal/Mol-Kelvin)

Electronic 1.000 0.000 0.000 0.000 0.000

Translational 0.583E+07 15.578 0.889 2.981 35.924

Rotational 51.266 3.937 0.592 1.987 9.811

Vibrational 1.000 0.007E-04 3.502 0.002 0.000

Total 0.299E+09 19.514 4.983 4.970 45.735

NIST source 45.7957 ± 0.001

NIST Computational Chemistry Comparison and Benchmark Database, 
NIST Standard Reference Database Number 101 
Release 17b, September 2015, Editor: Russell D. Johnson III 
http://cccbdb.nist.gov/ 

Temperature Pressure

298.15 K 1 Atm.

45.7957 ± 0.001

Quantum Thermodynamics



• Systems in solution 
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Limitations

Quantum Thermodynamics

Pes of 4 conformers of butane. Digital image. Http://chemistry.stackexchange.com/. N.p., 3 Oct. 2015. Web. 6 Apr. 2016. <http://i.stack.imgur.com/fgsHn.png>. 



• Systems in solution 

• Molecules with many rotational conformers
▫ Butane as shown below
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Limitations

Quantum Thermodynamics

Pes of 4 conformers of butane. Digital image. Http://chemistry.stackexchange.com/. N.p., 3 Oct. 2015. Web. 6 Apr. 2016. <http://i.stack.imgur.com/fgsHn.png>. 
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Systems of interest have many 

low lying electronic surfaces

transition metal atoms, radicals

Common approximations:
1. Born Oppenheimer

2. Harmonic oscillator

3. Rigid rotor

4. Ideal gas

Vibronic 
Hamiltonian

Nonadiabatic systems
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Born–Oppenheimer

Electronic Hamiltonian

Nonadiabatic systems
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Solve for a given configuration R

Nonadiabatic systems



34

• Adiabatic

Terminology

Nonadiabatic systems



34

• Adiabatic

• Diabatic

Terminology

Unitary 
Transformation

Nonadiabatic systems



34

• Adiabatic

• Diabatic

Terminology

Unitary 
Transformation

Nonadiabatic systems



34

• Adiabatic

• Diabatic

• Nonadiabatic
▫ Systems with close or intersecting energy surfaces

▫ Effects due to these off diagonal coupling terms

Terminology

Unitary 
Transformation

Nonadiabatic systems
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• Drives essential parts of visible and ultraviolet photochemistry and 
photobiology

• Collisions of electronically excited species

• Chemiluminescent reactions

• Electron transfer processes

Examples of nonadiabatic effects

Nonadiabatic systems



37Nonadiabatic systems

Conical intersections and  
internal conversion

Sobolewski, Andrzej L., and Wolfgang Domcke. "The chemical physics of the photostability of life." Europhysics News 37.4 (2006): 20-23.

Internal conversion
Transition from higher to lower 
electronic state without emission 
of photons

http://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Spectroscopy/Electronic_Spectroscopy/Jablonski_diagram
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Horio, Takuya, et al. "Probing ultrafast internal conversion through conical intersection via time-energy map of photoelectron angular anisotropy." Journal of the 
American Chemical Society 131.30 (2009): 10392-10393.

Conical intersections and  
internal conversion

Conical intersection
Molecular Geometry point at 
which two potential energy 
surfaces are degenerate (intersect)

Nonadiabatic systems

Suzuki, Toshinori. "Ultrafast Internal Conversion of Aromatic Molecules Studied by Photoelectron Spectroscopy using Sub-20 fs Laser Pulses." Molecules 19.2 (2014): 
2410-2433.
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• Most discussion is in terms of 
dynamics and relates to processes 
that occur over time

• Our focus is on thermodynamic 
properties of nonadiabatic systems 
in thermal equilibrium

Nonadiabatic effects

Nonadiabatic systems
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• Probability distribution function of the system of interest

• Probability distribution function of a system with no vibronic coupling

Analytical forms

Theoretical Developments
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• Sampling from a distribution 𝑝 𝑥 is equivalent to sampling with weight 
𝑝(𝑥)
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• We would like to sample from 

Importance Sampling
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Armadillo C++ template library

Sum over states method
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• Vibronic Hamiltonian  (with coupling)

• Harmonic Hamiltonian (without coupling)
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• Implement support for arbitrary coupling propagator 

• Implement quadratic and linear terms in SOS/analytical code(*correctly)

• Implement analytic portion of Z calculation

• Replicate the Python code in Fortran for increased performance

Future 

Current Progress
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• Developed a path integral formulation for nonadiabatic systems

• Developed two approaches to calculating Z 

• Derived estimators for thermodynamic properties

• About to start testing convergence of Path Integral Code

Conclusions


