Ergodicity in Path Integral Simulations

Matthew Schmidt Group Meeting Seminar November 11, 2016

What is Ergodicity?

- Regodic: A system's statistical properties can be deduced from a single, sufficiently long, random sample of the process
 - Monte Carlo, statistics/econometrics
- GR Ergodic ("dynamics"): The time average of a system is
 equal to the phase space average
 - During the course of a long simulation, the system explores all of it's accessible states with the correct statistical probabilities

Outline

- Real Methods (Molecular Dynamics)
 - Refinite Temperature PIMD
- $\begin{array}{c} \textcircled{\ } \mathbb{R} \\ \mathbb{R$
- "Quantifying Ergodicity"
 - □ LePIGS on pure hydrogen clusters (and isotopologues)
 - ↔ What can we infer from a system lacking ergodicity?
- Discrepancy stemming from lack of ergodicity
 Chemical Potential of hydrogen clusters
- Possible solution to more effective sampling
 WORM Algorithm

Path Integral Formulation Finite Temperature

- Real Partition function Z
- CR In canonical ensemble $Z = Tr(e^{-\beta \hat{H}}) = \int dR \langle R | e^{-\beta(\hat{K} + \hat{V})} | R \rangle$

 $\beta = \frac{1}{k_{\rm p}T}$

 $\tau = \frac{\beta}{P}$

$$egin{aligned} Z &= \int dR_1...dR_P ig \langle R_1 | \,\Omega \, | R_2
angle \ldots ig \langle R_P | \,\Omega \, | R_1
angle \ \Omega &= e^{-rac{ au}{2}\hat{V}} e^{- au\hat{K}} e^{-rac{ au}{2}\hat{V}} \end{aligned}$$

Particles represented by quantum beads (P) connected by harmonic springs

$$\begin{split} Z &= \lim_{P \to \infty} \left(\frac{m}{2\pi\tau\hbar^2} \right)^{\frac{P}{2}} \int dR_1 ... dR_P \\ &\times \exp\left\{ -\sum_{i=1}^{P} \left[\frac{m}{2\tau\hbar^2} \left(R_{i+1} - R_i \right)^2 + \frac{\tau V\left(R_i\right)}{P} \right] \right\} \end{split}$$

Feynman, R. P., 1953, Phys. Rev. 90, 1116

Path Integral Ground State Zero Temperature Limit

Ground state partition function

$$Z_0 = \lim_{\beta \to \infty} \left\langle \psi_T \left| \exp(-\beta \hat{H}) \right| \psi_T \right\rangle$$

 $\propto \psi_T$ is a 'guess' of the exact ground state wavefunction

 \bowtie β relaxes ψ_T to the ground state

$$Z_{0} = \lim_{P \to \infty} \int dR_{1} \dots \int dR_{P} \exp\left\{-\left[\sum_{i=1}^{P-1} \left[-\frac{m}{2\tau\hbar^{2}} \left(R_{i} - R_{i+1}\right)^{2}\right] + \sum_{i=1}^{P} \left[\tau V_{i}'\left(R_{i}\right)\right]\right]\right\}$$
$$V_{i}' = \begin{cases} \frac{1}{2}V(R_{i}) \\ V(R_{i}) \\ V(R_{i}) \end{cases} \quad \text{if } i = 1 \text{ or } i = P \\ \text{otherwise.} \end{cases} \quad \mathcal{T} = \frac{\beta}{P-1} \qquad 5 \end{cases}$$

S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)

Path Integral Ground State Zero Temperature Limit

$$Z_{0} = \lim_{P \to \infty} \int dR_{1} \dots \int dR_{P} \exp\left\{-\left[\sum_{i=1}^{P-1} \left[-\frac{m}{2\tau\hbar^{2}} \left(R_{i} - R_{i+1}\right)^{2}\right]\right] + \sum_{i=1}^{P} \left[\tau V_{i}'(R_{i})\right]\right]\right\}$$
$$V_{i}' = \begin{cases} \frac{1}{2}V(R_{i}) \\ V(R_{i}) \\ V(R_{i}) \end{cases} \text{ if } i = 1 \text{ or } i = P \\ \text{otherwise.} \end{cases} \qquad \mathcal{T} = \frac{\beta}{P-1}$$

S. Constable, M. Schmidt, et al. J. Phys. Chem. A 117, 7461 (2013)

6

Path Integral Methods

- Monte Carlo (PIMC)¹
 - Randomly sample path configuration
 - Maintain the canonical ensemble detailed balance
- Molecular Dynamics (PIMD)²
 - R Path configurations determined by equations of motion
 - More general no need to design MC moves
 Only a few simulation parameters required!
 - Can approximate real-time dynamics
 - ∞ Similar efficiency³
 - Our code: Cartesian co-ordinates only

Fig: http://www.coinsandcanada.com/news-archives.php?month=12&year=2009 ¹ D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995) ² M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984) ⁷

³ C. Ing, K. Hinsen, J. Yang, T. Zeng, H. Li, and P.-N. Roy, J. Chem. Phys. 136, 224309 (2012).

Quantum Methods to obtain Ground State Properties

Monte Carlo Molecular Dynamics

Low Temperature Low Temperature Path Integrals (PIMC) Path Integrals (PIMD)

Path Integral Ground State (PIGS-MC)

Langevin equation Path Integral Ground State (LePIGS)

Diffusion Monte Carlo $(DMC)^1$

¹ J. B. Anderson, J. Chem. Phys. 63, 1499–1503 (1975)

Quantum Methods to obtain Ground State Properties

Monte Carlo	Molecular Dynamics
Low Temperature	Low Temperature
Path Integrals (PIMC)	Path Integrals (PIMD)
Path Integral Ground	Langevin equation Path Integral
State (PIGS-MC)	Ground State (LePIGS)
Diffusion Monte Carlo (DMC) ¹	0

¹ J. B. Anderson, J. Chem. Phys. 63, 1499–1503 (1975)

Quantum Methods to obtain **Ground State Properties**

Monte Carlo Molecular Dynamics

Low Temperature Low Temperature Path Integrals (PIMC) Path Integrals (PIMD)

Path Integral Ground State (PIGS-MC)

Langevin equation Path Integral Ground State (LePIGS)

Diffusion Monte Carlo $(DMC)^1$

¹ J. B. Anderson, J. Chem. Phys. 63, 1499–1503 (1975)

PIMD: (Fixed H_2O)- pH_2 T = 0.37K

LePIGS: (Fixed H₂O)-pH₂

Accelerated nuclear quantum effects sampling with open path integrals

Guglielmo Mazzola^{a)} Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland Matthias Troyer Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland and Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052, USA

(Dated: 4 August 2016)

We numerically demonstrate that, in double well models, the autocorrelation time of open path integral Monte Carlo simulations can be much smaller compared to standard ones using ring polymers. We also provide an intuitive explanation based on the role of *instantons* as transition states of the path integral pseudodynamics. Therefore we propose that, in all cases when the ground state approximation to the finite temperature partition function holds, open path integral simulations can be used to accelerate the sampling in realistic simulations aimed to explore nuclear quantum effects.

Pure Hydrogen Clusters

- ↔ Numerous groups have looked at pure pH₂ and oD₂ clusters¹⁻³
- ↔ For us: Benchmark for LePIGS
 - ↔ Energetic and structural properties
 - The effect of trial wavefunctions
- R Investigated the ergodicity of these systems
 - Solid-like or liquid-like behaviour
 - Attempts to quantify ergodicity?
- ¹ J. E. Cuervo and P.-N. Roy
 ² Guardiola and Navarro
 ³ Mezzacapo and Boninsegni

$$\begin{array}{l} Lindemann \ Criterion \\ \delta_{L} = \frac{2}{N(N-1)} \sum_{i < j} \frac{\left(\langle r_{ij}^{2} \rangle - \langle r_{ij} \rangle^{2}\right)^{1/2}}{\langle r_{ij} \rangle} & \delta_{L^{G}} = \frac{\left(\langle r^{2} \rangle - \langle r \rangle^{2}\right)^{1/2}}{\langle r \rangle} \end{array}$$

Limit of long simulation, $\delta_L = \delta_L^G$ Deviation between δ_L and δ_L^G – enhanced rigidity

$$\delta_Q = \sqrt{N-1} \frac{\sqrt{\langle \left[\sum_{i < j} r_{ij}^2\right]^2 \rangle - \langle \sum_{i < j} r_{ij}^2 \rangle^2}}{\langle \sum_{i < j} r_{ij}^2 \rangle}$$

Our Work⁴ $\delta_F = \frac{\sqrt{\langle \left[\sum_{i < j} r_{ij}\right]^2 \rangle - \langle \sum_{i < j} r_{ij} \rangle^2}}{\langle \sum_{i < j} r_{ij} \rangle}$

¹ F. Lindemann, Physik. Z. 11, 609 (1910)

1

3

- ² J. E. Cuervo and P.-N. Roy, J. Chem. Phys. 128, 224509 (2008)
- ³ R. Guardiola and J. Navarro, J. Phys. Chem. A 115, 6843 (2011)
- ⁴ M. Schmidt et al, J. Chem. Phys, **140**, 234101 (2014)

Trial Wavefunctions

- \bigcirc Unity: $\psi_T = 1$

 - \bigcirc Ensures overlap with the ground state wavefunction

$$\Im \text{ Jastrow: } \psi_T = \exp\left[-\frac{1}{2}\sum_{i < j} \left(\frac{b}{r_{ij}}\right)^5\right]$$

- ∞ Liquid-like trial wavefunction
- \sim 'b' represents hard-core repulsion between pair distance (r_{ii})

$$\Re \text{ Normal Mode: } \psi_T = \exp\left[-\frac{1}{2h}\sum_{k=1}^{3N-6}\omega_k Q_k^2\right]$$

- Solid-like trial wavefunction (harmonic)
- $\bowtie \omega_k$ vibrational frequencies, Q_k normal modes

Energy convergence with $oldsymbol{ au}$ for "Stable" System

Normal Modes Wavefunction Jastrow Wavefunction

Fig: Cambridge Cluster Database

Energy convergence with ${m au}$ for "Floppy" System

Normal Modes Wavefunction Jastrow Wavefunction

Different Conformers of $(pT_2)_{33}$

r (Å)

So Far...

- Regodicity issues arise from:
 - ↔ Method Low Temperature PIMD/PIMC vs PIGS
 - Trial wavefunctions can introduce additional ergodicity problems
 - ∞ Solid-like behaviour of the system
- Refrect of ergodicity problems?
 - ↔ Wrong energies!
- This could lead to the wrong chemical potential

Ground State Chemical Potential (pH₂)_N

- Subject of much research: conflicting results between N=20-40
- Some methods show subtle oscillations
 - \bigcirc PIMC¹: T = 0.25 K
 - \bigcirc DMC²: Ground state method
- Some methods show large oscillations
 - $\label{eq:pimerator} \texttt{CR} \ \ \texttt{PIMC}^3: \qquad T \geq 0.50 \ \texttt{K}$
 - \bigcirc PIGS-MC⁴: Ground state method
- R Consequences
 - Super-solid" (superfluid with solid order)
 - R Quantum melting
- ¹F. Mezzacapo and M. Boninsegni, J. Phys.: Condens. Matter 21 164205 (2009)
 ²R. Guardiola and J. Navarro, Cent. Eur. J. Phys 6 33 (2008)
 ³S.A Khairallah, M.B. Sevryuk, D.M. Ceperley, J.P. Toennies, PRL 98 183401 (2007)
 ⁴J. E. Cuervo and P.-N. Roy, J. Chem. Phys. 128 224509 (2008)

Consensus?

- - Both ground state methods
 - \bigcirc DMC population size bias
- R Look to finite temperature
 - ↔ Changes between 0.50K and 0.25K
 - Quantum melting?
- Rext steps:
 - \bigcirc Formulate grand canonical PIGS (with WORM algorithm)¹
 - \curvearrowright Allows for calculation of μ as a function of N

¹C. Herdman, A. Rommal, and A. Del Maestro, Phys Rev B **89** 224502 (2014)

Grand Canonical (µVT) Ensemble

¹C. Herdman, A. Rommal, and A. Del Maestro, Phys Rev B 89 224502 (2014)

Implementing WORM in MMTK

- WORM algorithm¹ allows sampling of nuclear exchange
- Will be first to implement in molecular dynamics framework
- - \bigcirc OPEN/CLOSE switching between Z- and G-sectors
 - ↔ ADVANCE/RECEDE– changing path length
 - ∞ SWAP permutation sampling
- Currently implemented canonically
 - ↔ Without INSERT/REMOVE
 - R We use an infinite universe, no volume
- Systems can be compared vs PIMC (ex. MoRiBS²)

32

 ¹ M. Boninsegni, N.V. Prokof'ev, and B.V. Svistunov, Phys. Rev. E **74**, 036701 (2006)
 ² T. Zeng, N. Blinov, K. Bishop, G. Guillon, H. Li, and P.-N. Roy, Comp. Phys. Comm, **204**, 170 (2016)

if (self.wormExists==Fa	lse):		
p_updates[0]=0.70	#remain	(do	nothing
<pre>p_updates[1]=0.30</pre>	#open		
p_updates[2]=0.0	#close		
<pre>p_updates[3]=0.0</pre>	#advance		
p_updates[4]=0.0	<pre>#recede</pre>		
p_updates[5]=0.0	#swap		
else:			
p_updates[0]=0.50	#remain		
p_updates[1]=0.0	#open		
p_updates[2]=0.30	#close		
p_updates[3]=0.05	#advance	2	
p_updates[4]=0.05	#recede		
p_updates[5]=0.10	#swap		

xval=arange(6)
CHOOSE UPDATE
chosen_update=choice(xval,p=p_updates)

```
if(chosen_update==1):
    accept=self.openWORM(x)
elif(chosen_update==2):
    accept=self.closeWORM(x,v)
elif(chosen_update==3):
    accept=self.advanceWORM(x,v)
elif(chosen_update==4):
    accept=self.recedeWORM(x)
elif(chosen_update==5):
    accept=self.swapWORM(x,v)
```

Progress:

• Utilizes Dmitri's MMTK modifications allowing dynamic changing of path configurations and potential scaling

• "Dummy beads" (set of noninteracting beads) allow for advance/recede moves

• The "Area Estimator" analysis script has been coded to calculate the superfluid fraction

• Currently testing on hydrogen cluster

PIMD : $(pH_2)_5$ at T=0.5K

Step 992500 [0.0498430865793 0.316595901791] 0.0148148148148 0.00174927113703 [0.157467232786 0.159313273029] 0.372801875733 0.384704519119 [0.316780505815] 0.03962703962 Step 993000 [0.049815498155 0.316605166052] 0.0148148148148 0.00174825174825 [0.157564575646 0.159225092251] 0.373536299766 0.384704519119 [0.316789667897] 0.039603960396 Step 993500 [0.0497879402545 0.316614420063] 0.0148148148148 0.00174723354688 [0.157477411027 0.159321408814] 0.373536299766 0.384259259259 [0.316798819841] 0.03958090803 Step 994000 [0.0497604128271 0.316623663841] 0.0148148148148 0.00174621653085 [0.157574640619 0.159233321047] 0.373099415205 0.384259259259 [0.316807961666] 0.03955788248 Step 994500 [0.0497329158224 0.316632897403] 0.0148148148148 0.00174520069808 [0.157671762756 0.159145330632] 0.372663551402 0.384259259259 [0.316817093387] 0.03953488372 Step 995000 [0.04970544919 0.316642120766] 0.0148148148148 0.00174418604651 [0.157584683358 0.159241531664] 0.372663551402 0.384971098266 [0.316826215022] 0.0395119116793 Step 995500 [0.0496780128795 0.316651333947] 0.0148148148148 0.00174317257408 [0.157681692732 0.159153633855] 0.372228704784 0.384971098266 [0.316835326587] 0.03948896631 Step 996000 [0.0496506068408 0.316660536962] 0.0148148148148 0.00174216027875 [0.157594703935 0.159249724163] 0.372228704784 0.385681293303 [0.316844428099] 0.03946604759 Step 996500 [0.0496232310237 0.316669729829] 0.0148148148148 0.00174114915844 [0.157507811064 0.159345708509] 0.372228704784 0.386389850058 [0.316853519574] 0.03944315545 Step 997000 [0.0495958853784 0.316678912564] 0.0148148148148 0.00174013921114 [0.15742101396 0.159441587068] 0.372228704784 0.385944700461 [0.316862601029] 0.039420289855 Step 997500 [0.049568569855 0.316688085185] 0.0148148148148 0.00173913043478 [0.157517899761 0.159353772719] 0.37296037296 0.385944700461 [0.31687167248] 0.0393974507532 Step 998000 [0.0495412844037 0.316697247706] 0.0148148148148 0.00173812282735 [0.157431192661 0.159449541284] 0.37296037296 0.385500575374 [0.316880733945] 0.039374638100 Step 998500 [0.0495140289749 0.316706400147] 0.0148148148148 0.0017371163868 [0.157527966257 0.159361819182] 0.373690337602 0.385500575374 [0.316889785439] 0.039351851851 Step 999000 [0.0494868035191 0.316715542522] 0.0148148148148 0.00173611111111 [0.157441348974 0.159457478006] 0.373690337602 0.385057471264 [0.316898826979] 0.03932909196 Step 999500 [0.0494596079868 0.316724674849] 0.0148148148148 0.00173510699826 [0.157538010625 0.159369847958] 0.373255813953 0.385057471264 [0.316907858582] 0.03930635838 Step 10000000 [0.0494324423288 0.316733797144] 0.0148148148148 0.00173410404624 [0.157634566093 0.159282314171] 0.373983739837 0.385057471264 [0.316916880264] 0.0392836510

MoRiBS: $(pH_2)_5$ at T=0.5K

STEP: 2470000	open/close [0.0048507-0.3301]	0.0214257 0.000314843	advance/recede [0.164998-0.165101]	0.989489 0.988991	swap [0.3301] 0.00018815
STEP: 2480000	open/close [0.00483105-0.330113]	0.0214257 0.00031355	i5 advance/recede [0.165003-0.16511]	0.989498 0.988981	swap [0.330113] 0.00018738
STEP: 2490000	open/close [0.00481164-0.330126]	0.0214309 0.00031235	9 advance/recede [0.165016-0.165109]	0.989489 0.989019	swap [0.330126] 0.000186617
STEP: 2500000	open/close [0.00482011-0.33012]	0.0214357 0.000312984	advance/recede [0.165015-0.165105]	0.989493 0.989044	swap [0.33012] 0.000185875
STEP: 2510000	open/close [0.00481645-0.330122]	0.021444 0.000312946	advance/recede [0.165017-0.165105]	0.989494 0.989071	swap [0.330122] 0.000185132
STEP: 2520000	open/close [0.00489186-0.330072]	0.021466 0.000318138	advance/recede [0.164992-0.16508]	0.989403 0.988971	swap [0.330072] 0.000195232
STEP: 2530000	open/close [0.00491729-0.330055]	0.0214811 0.00032003	4 advance/recede [0.164986-0.165069]	0.989289 0.988925	swap [0.330055] 0.000200091
STEP: 2540000	open/close [0.0048986-0.330068]	0.0214831 0.000318836	advance/recede [0.164989-0.165079]	0.989318 0.988911	swap [0.330068] 0.000199292
STEP: 2550000	open/close [0.0048793-0.33008]	0.0214831 0.000317567	advance/recede [0.164988-0.165092]	0.989355 0.98888	swap [0.33008] 0.000198499
STEP: 2560000	open/close [0.00486015-0.330093]	0.0214831 0.00031630	08 advance/recede [0.164997-0.165096]	0.989362 0.988882	swap [0.330093] 0.000197713

Radial distribution of density and superfluid density of $(pH_2)_{18}$

Density = g(r)

Superfluid density computed from:

$$\frac{\rho_S(r)}{\rho(r)} = \frac{4m^2 \langle AA(r) \rangle}{\beta \hbar^2 I_C(r)}$$

(Å⁻³)

Mezzacapo F and Boninsegni M, *Phys.Rev.Lett*, **100**, 145301 (2008)

To Do List

- Continue to test the WORM algorithm Currently small clusters of hydrogen
- Implement Grand Canonical scheme
 Will further help with ergodicity
 For PIMD and LePIGS
- Recalculate hydrogen chemical potential
 See if peaks diminish

Acknowledgements

- CR Chris Ing (PIMD), Steve Constable (LePIGS)
- CR Dmitri Iouchtchenko (WORM, MMTK reconnectors)
- Adrian Del Maestro and Chris Herdman (WORM)
- Real Pierre-Nicholas Roy
- ↔ Whole theory group!