Theoretical study of methane containing molecular pairs

Yulia Kalugina

27 January 2017

Introduction

Weakly bound complexes can give an effect on the physical and chemical properies of gas media

Line broadening Collisional (de-)excitation (energy transfer) Collision-induced absorption (due to induced dipole moment)

Spectroscopy, dynamics

Almost free rotation of monomers; Test for PESs, development of new theoretical models

Astrophysics

 CH_4 , N_2 , Ar, CO_2 & CO are of great interest for study of interstellar medium. They are contained in atmospheres of planets and molecular clouds.

Introduction

TITAN

CH₄-N₂ and CH₄-Ar complexes are of particular interest for the atmosphere of Titan

-low temperature (from 70 to 100 K) -most abundant species of the atmosphere: N_2 (94%) and CH_4 (2-5 %), traces of Ar

 CH_4 - CO_2 complex is relevant to the early martian and terrestrial planet atmospheres

Methane – polluant of Earth's atmosphere

Introduction

In order to obtain physical properties of molecular complexes one needs to have a potential energy surface (PES) and for some applications also the dipole moment surfaces

Progress in computational quantum chemistry and in computational resources tools to carry out accurate calculations

Van-der-Waals systems

(R)CCSD(T) /AV5Z or (R)CCSD(T)/CBS

reference when system is monoconfigurational, consisting of light atoms

problem: computational time

BSSE correction should be taken into account for calculation of interaction energy and electric properties

Andrei Vigasin

Obukhov Institute of Atmospheric Physics Moscow, Russia

Sergei Lokshtanov

Lomonosov Moscow State University Department of Chemistry

THE JOURNAL OF CHEMICAL PHYSICS 144, 054304 (2016)

CrossMan

Ab initio 3D potential energy and dipole moment surfaces for the CH₄–Ar complex: Collision-induced intensity and dimer content

Yulia N. Kalugina, $^{1,a)}$ Sergei E. Lokshtanov, 2,3 Victor N. Cherepanov, 1 and Andrey A. Vigasin $^{3,b)}$

Computational details

Molecule fixed frame

for CH_4 -Ar 0.0000 - aug-cc-pVDZ aug-cc-pVTZ - aug-cc-pVQZ -0.0005 CBS(D,T,Q) - aug-cc-pVDZ+bf aug-cc-pVTZ+bf -0.0010 aug-cc-pVQZ+bf (⁰e⁰) ≭ -0.0015 -0.0020 -0.0025 6 ġ 7 8 10 $R(a_0)$

3D Potential energy and dipole moment surfaces

 $< r_{CH} > 0 = 2.0674 a_0$

Interaction energy for all angles = 0

Computational details

PES : CCSD(T)/CBS (X=D,T,Q) level DMSs : CCSD(T)/aug-cc-pVTZ+bond functions

Angles θ and ϕ were chosen randomly in the intervals 0°-180° and 0°-360°. 30 values of R : 4.5-30 a_0

$$V(R,\theta,\varphi) = \sum_{l,m} v_{lm}(R) P_{lm}(\cos(\theta)) \cos(m\varphi)(-1)^{m}$$
$$\mu_{x,z}(R,\theta,\varphi) = \sum_{l,m} \alpha_{lm}(R) P_{lm}(\cos(\theta)) \cos(m\varphi)(-1)^{m}$$
$$\mu_{y}(R,\theta,\varphi) = \sum_{l,m} \alpha_{lm}(R) P_{lm}(\cos(\theta)) \sin(m\varphi)(-1)^{m}$$

Finite-Field method:

$$\begin{split} E(F_{\alpha}) &= E^{0} - \mu_{\alpha}F_{\alpha} - \frac{1}{2}\alpha_{\alpha\alpha}F_{\alpha}^{2} - \frac{1}{6}\beta_{\alpha\alpha\alpha}F_{\alpha}^{3} - \frac{1}{24}\gamma_{\alpha\alpha\alpha\alpha}F_{\alpha}^{4} + \cdots \\ \mu_{\alpha} &= -\frac{E(F_{\alpha}) - E(-F_{\alpha})}{2F_{\alpha}}. \qquad \mu_{\alpha} = \frac{256D_{\alpha}(F_{\alpha}) - 40D_{\alpha}(2F_{\alpha}) + D_{\alpha}(4F_{\alpha})}{180F_{\alpha}}, \\ D_{\alpha} &= \frac{E(F_{\alpha}) - E(-F_{\alpha})}{2}. \end{split}$$

Basis functions

Energy		μ_{*}	$, \mu_y$	ŀ	l_z
1	m	1	m	1	m
0	0	1	1	1	0
3	2	2	1	2	2
4	0	3	1	3	0
4	4	3	3	3	2
6	0	4	1	4	2
6	4	4	3	4	4
7	2	5	1	5	0
7	6	5	3	5	2
8	0	5	5	5	4
8	4	6	1	6	2
8	8	6	3	6	4
9	2	6	5	6	6
9	6	7	1	7	0
10	0	7	3	7	2
10	4	7	5	7	4
10	8	7	7	7	6
		8	1	8	2
		8	3	8	4
		8	5	8	6
		8	7	8	8
				-	

Computational details

PES : CCSD(T)/CBS (X=D,T,Q) level DMSs : CCSD(T)/aug-cc-pVTZ+bond functions

Angles θ and ϕ were chosen randomly in the intervals 0°-180° and 0°-360°. 30 values of R : 4.5-30 a_0

$$V(R,\theta,\varphi) = \sum_{l,m} v_{lm}(R) P_{lm}(\cos(\theta)) \cos(m\varphi)(-1)^{m}$$
$$\mu_{x,z}(R,\theta,\varphi) = \sum_{l,m} \alpha_{lm}(R) P_{lm}(\cos(\theta)) \cos(m\varphi)(-1)^{m}$$

$$\mu_{y}(R,\theta,\varphi) = \sum_{l,m} \alpha_{lm}(R) P_{lm}(\cos(\theta)) \sin(m\varphi)(-1)^{m}$$

Basis functions

Energy		μ_{lpha}	$,, \mu_y$	P	l_z
1	m	1	m	1	m
0	0	1	1	1	0
3	2	2	1	2	2
4	0	3	1	3	0
4	4	3	3	3	2
6	0	4	1	4	2
6	4	4	3	4	4
7	2	5	1	5	0
7	6	5	3	5	2
8	0	5	5	5	4
8	4	6	1	6	2
8	8	6	3	6	4
9	2	6	5	6	6
9	6	7	1	7	0
10	0	7	3	7	2
10	4	7	5	7	4
10	8	7	7	7	6
		8	1	8	2
		8	3	8	4
		8	5	8	6
		8	7	8	8

Potential energy

Table. Present and literature values of D_e and equilibrium geometry

[Alex2006] fp-CCSD(T)/CBS [Heijmen1997] SAPT

Equilibrium structure of CH₄-Ar

	This work	Literature
D _e	-141.47 cm ⁻¹	-140.6 cm ⁻¹ [Alex2006] -143.4 cm ⁻¹ [Heijmen1997]
R _e	6.95 a ₀	7.00 a ₀ [Alex2006] 7.00 a ₀ [Heijmen1997]

There are two non-equivalent minima on the interaction surface :

Global minimum -141.47 cm⁻¹ R=6.95 $a_0 \theta$ =54.7° ϕ =0° Local minimum -115.06 cm⁻¹ R=7.34 $a_0 \theta$ =180° ϕ =0°

Temperature dependence of physical properties

Mixed part of Second Virial Coefficient (Classical)

$$B_{12}(T) = \frac{N_0}{2} \int_0^\infty \int_0^{\pi} \int_0^{2\pi} \left(1 - e^{-\frac{V(R,\theta,\varphi)}{kT}}\right) R^2 dR \sin\theta d\theta d\varphi$$

No is the Avogardro number

Total second virial coefficient (SVC)

$$B = x_1^2 B_{11} + 2 x_1 x_2 B_{12} + x_2^2 B_{22}$$

x_i stands for the molar fraction

Red line – present work; Symbols - J. D. Dymond, K. N. Marsh, R. C. Wilhoit, Virial Coefficients of Pure Gases and Mixtures, M. Fenkel and K. N. Marsh, editors, (Series: Physical Chemistry, Subvolume 21B, Springer, 2003).

Temperature dependence of physical properties

Equilibrium constant for true bound CH₄-Ar dimer formation

$$K_{P}^{bound} = \frac{N_{0}}{\Re T} \int_{V(R,\theta,\varphi) \le 0} \frac{\gamma \left(3, -\frac{V(R,\theta,\varphi)}{kT}\right)}{\Gamma(3)} e^{-\frac{V(R,\theta,\varphi)}{kT}} R^{2} dR \sin \theta d\theta d\varphi$$

$$\Gamma(3)=2; \ \Re \text{ is a gas constant and incomplete gamma-function:}$$

$$\gamma(a,b) = \int_{0}^{b} \varpi^{a-1} e^{-\varpi} d\varpi$$

To obtain the dimer mole fraction at relatively low density it is sufficient to use approximation

$$x_{12} = K_{P}(T)P$$
where P is the pressure in atm.

Temperature dependence of physical properties

Oth spectral moment of the rototranslational collision-induced band

 Γ_0 has the meaning of the total intensity of an absorption band

There are 2 ways of getting this property :

1. From experimentally measured absorption coefficient

$$\Gamma_0 = \int_0^\infty \frac{\alpha(v)dv}{v \tanh\left(\frac{hcv}{2kT}\right)}$$

v is a frequency in cm⁻¹; a(v) is a binary absorption coefficient in Amagat⁻² cm⁻¹; Amagat is a number density of an ideal gas at normal conditions (2.7 10¹⁹ molecules cm⁻³)

? From theory

$$\widetilde{\Gamma}_{0} = \frac{32\pi^{4}}{3hc} \int_{0}^{\infty} \int_{\Omega} \mu^{2}(R,\Omega) e^{-\frac{V(R,\Omega)}{kT}} R^{2} dR d\Omega$$

Experiment

Theory

L. Surin

A. Faure

A. van der Avoird

н

X1

Q1

н

Experiment was done at the Cologne University by L. Surin and A. Potapov using OROTRON jet spectrometer

← click for une

THE JOURNAL OF CHEMICAL PHYSICS 143, 154303 (2015)

Rotational study of the CH₄–CO complex: Millimeter-wave measurements and *ab initio* calculations

L. A. Surin,^{1,2,a)} I. V. Tarabukin,² V. A. Panfilov,² S. Schlemmer,¹ Y. N. Kalugina,³ A. Faure,^{4,5} C. Rist,^{4,5} and A. van der Avoird^{6,b)} ¹I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne, Germany ²Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow, Russia ³Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia ⁴University Grenoble Alpes, IPAG, F-38000 Grenoble, France ⁵CNRS, IPAG, F-38000 Grenoble, France ⁶Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

omputational details

10.0 10.5 11.0 11.5 12.0

CCSD(T)/aVTZ

CCSD(T)/aVQZ

CCSD(T)/CBS(D,T,Q)

- CCSD(T)/aVTZ+bf

-CCSD(T)/aVQZ+bf

- SAPT/aVTZ

8.5

SAPT/aVQZ

-40

-50

-60

-70

-80

-90

-100

-110-

7.5

8.0

V (cm⁻¹)

CCSD(T)/aVTZ

CCSD(T)-F12a/aVTZ BSSE 90 000 geometries in total

 $D_{\rho} = 177.82 \text{ cm}^{-1}$ binding energy

 $D_0 = 91.32, 104.21, 94.46 \text{ cm}^{-1}$ for A, E, F modifications

R (a_)

CCSD(T)/aVTZ

CCSD(T)/aVQZ

---- CCSD(T)/aVTZ+bf

9.0 9.5

- SAPT/aVQZ

-CCSD(T)/CBS(D,T,Q)

- CCSD(T)/aVQZ+bf

-30

-40-

-50 -

-60

-70-

-80

-90

-100-

-110-

8.5

V (cm⁻¹)

9.0

R (a_)

9.5

10.0

10.5

Method	Basis set	Real time 2.1GHz, 24 Gb RAM, node=12ppn
CCSD(T) CCSD(T) CCSD(T)	aVDZ aVTZ aVQZ	1 m 28 m 14 h
CCSD(T)-F12	aVTZ	30 m

Theoretical and experimental energy levels of CH₄-CO

CH_4 –CO, jCH4 = 0

State	J	Calculation (cm ⁻¹)	Observation (cm ⁻¹)	OC (cm ⁻¹)
K = 0 (e)	0	0.000 00	0.000 00	0.000
	1	0.20775	0.207 34	0.000
	2	0.623 13	0.62191	-0.001
	3	1.245 88	1.243 44	-0.002
	4	2.075 65	2.07158	-0.004
	5	3.11192	3.10581	-0.006
	6	4.354 08	4.345 50	-0.009
K = 1(e)	1	2.289 34	2.28078	-0.009
	2	2.695 08	2.68612	-0.009
	3	3.303 42	3.293 87	-0.010
	4	4.114 05	4.10371	-0.010
	5	5.126 54	5.11523	-0.011
	6	6.34034	6.327 88	-0.012
K = 1(f)	1	2.297 48	2.28871	-0.009
	2	2.71948	2.70991	-0.010
	3	3.352 20	3.34149	-0.011
	4	4.19528	4.18316	-0.012
	5	5.248 26	5.234 54	-0.014
	6	6.51056	6.49515	-0.015

$$\begin{array}{c} (e) \rightarrow \epsilon = +1 \\ (f) \rightarrow \epsilon = -1 \end{array}$$

K is the projection of total angular momentum J on intermolecular axis.

Calculations of the bound states were performed using DVR method Basis: $jCH4 \le 9$, $jCO \le 12$ $J \le 6$

CH_4 –CO, jCH4 = 1

State	J	Calculation (cm ⁻¹)	Observation ^a (cm ⁻¹)	$O-C (cm^{-1})$
K = 0 (e)	0	0.000 00	0.000 00	0.000
	1	0.190 05	0.19216	0.002
	2	0.57117	0.577 10	0.006
	3	1.145 06	1.15606	0.011
	4	1.913 67	1.93087	0.017
	5	2.87877	2.90401	0.025
	6	4.04173	4.078 56	0.037

K	đ	(CDE)	a contra
1	ÇE2	ÇE2	(COD)
2	Ç51	Ç E 1	(AD)
З	1123	12	(JD)
4	15B)	19	(JDP)
5	Z₽B	200	ABB
6	48D	48	COO)

CH4-CO2 and CH4-N2

The *ab initio* calculations of the PES were carried out at the CCSD(T)-F12a/aVTZ level of theory

Equilibrium geometry: $R_e = 6.38 a_o, D_e = 338 cm^{-1}$ 60 000 energies 213 basis functions

Equilibrium geometry: $R_e = 6.80 a_o, D_e = 166 cm^{-1}$

> 90 000 energies 103 basis functions0

Difference between CO₂ and N₂: Θ -3.16 a.u. -1.11 a.u. α 17.44 a.u. 11.76 a.u.

PESs for CH₄-CO₂ and CH₄-N₂

The PES was represented in form

$$V(R,\theta_1,\varphi_1,\theta_2,\varphi_2) = \sum_{l_1,l_2,m_1,l} v_{l_1l_2m_1l}(R) t_{l_1l_2m_1l}(\theta_1,\varphi_1,\theta_2,\varphi_2)$$

$$t_{l_{1}l_{2}m_{1}l}(\theta_{1},\varphi_{1},\theta_{2},\varphi_{2}) = \alpha_{l_{1}l_{2}m_{1}l}(1+\delta_{m_{1}0})^{-1} \sum \begin{pmatrix} l_{1} & l_{2} & l \\ r_{1} & r_{2} & r \end{pmatrix} Y_{l_{2}r_{2}}(\theta_{2},\varphi_{2})Y_{lr}(\theta_{1},\varphi_{1})$$
$$\times \left[\delta_{m_{1}r_{1}} + (-1)^{l_{1}+m_{1}+l_{2}+l}\delta_{-m_{1}r_{1}}\right]$$

with normalization factor

$$\alpha_{l_1 l_2 m_1 l} = [2(1 + \delta_{m_1 0})^{-1} (2l_1 + 1)^{-1}]^{-1/2}$$

Indices l_{1}, m_{1}, l_{2}, l refer to the CH₄ orientation, the N₂/CO₂ orientation and the collision vector orientation (*R*), respectively.

Most stable configuration

0.1

0.01

1E-3

For CH_4 -N₂ complex barier height is only ~0.001 cm⁻¹

Family of the most stable configurations

ϕ , deg	Energy, cm-1
0	-165.59905
10	-165.59937
20	-165.59978
30	-165.59982
40	-165.59978
50	-165.59937
60	-165.59905

 CH_4 -Ar

T, K

450

Dipole moment

The Dipole Moment surface was obtained the long-range approximation

Induced Dipole moment components for CH_4 - CO_2 pair. Symbols: *ab initio* CCSD(T)/aVTZ+BSSE correction; Lines: long-range approximation.

$$T_{\gamma\delta\ldots\varphi} = \nabla_{\gamma}\nabla_{\delta}\ldots\nabla_{\varphi}(R^{-1})$$

Induction contribution: $\mu_{\alpha}^{ind} = \frac{1}{3} \alpha_{\alpha\beta}^{A} \Theta_{\gamma\delta}^{B} T_{\beta\gamma\delta} - \frac{1}{9} A_{\alpha,\beta\gamma}^{A} \Theta_{\delta\varepsilon}^{B} T_{\beta\gamma\delta\varepsilon} + \frac{1}{15} \alpha_{\alpha\beta}^{B} \Omega_{\gamma\delta\varepsilon}^{A} T_{\beta\gamma\delta\varepsilon} +$ $+\frac{1}{105}\alpha^{A}_{\alpha\beta}\Phi^{B}_{\gamma\delta\varepsilon\varphi}T_{\beta\gamma\delta\varepsilon\varphi}-\frac{1}{105}\alpha^{B}_{\alpha\beta}\Phi^{A}_{\gamma\delta\varepsilon\varphi}T_{\beta\gamma\delta\varepsilon\varphi}+\frac{1}{45}E^{A}_{\alpha,\beta\gamma\delta}\Theta^{B}_{\varepsilon\varphi}T_{\beta\gamma\delta\varepsilon\varphi} -\frac{1}{215}A^{A}_{\alpha,\beta\gamma}\Phi^{B}_{\delta\varepsilon\varphi\nu}T_{\beta\gamma\delta\varepsilon\varphi\nu}+\frac{1}{225}E^{B}_{\alpha,\beta\gamma\delta}\Omega^{A}_{\varepsilon\varphi\nu}T_{\beta\gamma\delta\varepsilon\varphi\nu}+\frac{1}{3}\alpha^{B}_{\alpha\beta}\Theta^{B}_{\gamma\delta}\alpha^{A}_{\varepsilon\varphi}T_{\beta\varepsilon}T_{\varphi\gamma\delta}+$ $-\frac{1}{215}D^{A}_{\alpha,\beta\gamma\delta\varepsilon}\Theta^{B}_{\varphi\nu}T_{\beta\gamma\delta\varepsilon\varphi\nu},$ Dispersion contribution: $\mu_{\alpha}^{disp} = -\frac{1}{2\pi} \int_{0}^{\infty} d\omega \beta_{\alpha\beta\gamma}^{A}(i\omega,0) \alpha_{\delta\varepsilon}^{B}(i\omega) T_{\beta\delta} T_{\gamma\varepsilon} +$ $+\frac{1}{2\pi}\int_{0}^{\infty}d\omega[B^{B}_{\alpha\beta,\gamma\delta}(0,i\omega)\alpha^{A}_{\varepsilon\varphi}(i\omega)-B^{A}_{\alpha\beta,\gamma\delta}(0,i\omega)\alpha^{B}_{\varepsilon\varphi}(i\omega)]T_{\beta\varepsilon}T_{\varphi\gamma\delta}$ $\mu_{\alpha}^{disp(CRA)} = -\frac{5\beta_{\alpha\beta\gamma}^{A}\alpha_{\delta\varepsilon}^{B}}{36\alpha^{A}\alpha^{B}}T_{\beta\delta}T_{\gamma\varepsilon}C_{6} - \left(B_{\alpha\beta,\gamma\delta}^{A}\alpha_{\varepsilon\varphi}^{B} - B_{\alpha\beta,\gamma\delta}^{B}\alpha_{\varepsilon\varphi}^{A}\right)\frac{5T_{\beta\varepsilon}T_{\varphi\gamma\delta}C_{6}}{54\alpha^{A}\alpha^{B}}$

DMS for CH₄-N₂ was constructed by analogy with CH₄-CO₂ pair

Induced Dipole moment components for CH_4 - N_2 pair. Symbols: *ab initio* CCSD(T)/aVTZ+BSSE correction; Dash line: long-range approximation.

Contribution of different terms in the dipole moment of the most stable configuration of the CH_4 -N₂ complex

CIA for CH₄-CO₂ and CH₄-N₂

The work on these systems was initiated due to a high interest of researches conducting the climate simulations of early Mars and exoplanets. The CIA is necessary for their radiative transfer models.

The CIA for CH_4 - CO_2 is absent!

$$\Gamma_{0} = \int_{0}^{\infty} \frac{\alpha(v) dv}{v \tanh\left(\frac{hcv}{2kT}\right)} \quad \blacksquare \quad \tilde{\Gamma}_{0} = \frac{32\pi^{4}}{3hc} \int_{0}^{\infty} \int_{\Omega} \mu^{2}(R,\Omega) e^{-\frac{V(R,\Omega)}{kT}} R^{2} dR d\Omega$$

Simulated (solid lines) and experimental (dash line, HITRAN) rototranslational band profiles at 300K

CIA for CH₄-CO₂ and CH₄-N₂

Our results on CIA allowed to carry out the first realistic calculations of greenhouse warming on early Mars.

Results: just 0.5 bar (or more) of atmospheric CO_2 , a few percent of H_2 or CH_4 would have raised surface temperature by tens of degrees, with temperatures reaching 273K, leading to the geological observations that we can see now (evidence of abundant liquid water on early Mars: dendritic valley networks, fluvial conglomerates, open-basin lakes...)

It was shown that the strength of both CO_2 -H₂ and CH_4 -CO₂ CIA has previously been significantly underestimated. Because due to the lack of information, scientists used scaling of N₂-H₂ data to get CIA for CO_2 -H₂ and didn't consider CH_4 -CO₂ as an effective warming agent. But it turned out to be! due to the peak of CO_2 -CH₄ CIA in a key spectral window region : 250-500 cm⁻¹ Hight profiles for some dimers in atmosphere of Titan

Height profiles of some true bound dimers in Titan's atmosphere. Dashed parts of the curves relate to the altitudes for which the data measured on-board of Cassini-Huygens spacecraft are missed

Results

- 3D PES and DMSs of CH4-Ar are obtained in analytical form based on coupled cluster calculations
- 5D PESs for CH4-CO, CH4-Co2 and CH4-N2 are calculated at the CCSD(T)-F12a/aVTZ level and represented in analytical form
- Equilibrium constant (T) of dimer formation is reported for CH4-N2 and CH4-Ar
- CIA for CH4-N2 and CH4-CO2
- The rotational energy levels of CH4-CO complex are calculated. New measured transitions assigned.

Aknowledments

- RFBR Grant 13-05-00751 "Theoretical modeling and laboratory study of collision-induced absorption in gas media containing methane"
- RFBRI Grant 15-05-00736 "Laboratory and theoretical studies of greenhouse effect related to dipole forbidden molecular absorption in planetary and paleo-atmospheres"
- Ab initio calculations were performed using HPC resources of SKIF-Cyberia (TSU) and Harvard Odyssey supercomputer

Thank you for your attention!!!