

Compact Coulomb integrals using shortrange real-space and long-range Fourier representations

University of Waterloo

Mike Lecours Mini Symposium Wednesday, November 6th, 2019 Overview

UNIVER

Atomic orbital integrals required for electronic structure calculations do not scale linearly w.r.t system size.

Range Separation

UNIVER

- Short-range treated in real space
- Long-range treated in reciprocal space

Short-Range Integrals

• Use density fitting

TY OF

UNIVERSITY

 $V_{sr}^{ee} = (\alpha\beta |\gamma\delta)_{sr}$ $= \sum_{X,Y} (\alpha\beta |X)_{sr} (X|Y)_{sr}^{-1} (Y|\gamma\delta)_{sr}$

X,Y are auxiliary fitting functions

6

2

4

Treated with Cholesky decomposition
$$(X|Y)_{sr}^{-1} = L^{-1^{T}}L^{-1}$$

$$(\alpha\beta|X)_{sr} = (\alpha\beta|X)L^{-1^T}$$

14

10

8

Chain Length

12

Short-Range Integrals

 $(\alpha\beta \mid X)_{sr}$

UNIVER

 α, β cannot be too far apart, AO integrals are local.

X **cannot** be too far from α , β , short-range.

Long-Range Integrals

UNIVER

• Treated in Fourier space, numerical integration over g

$$V_{lr}(r_1, r_2) = \int d^3g \,\eta(g) \, e^{ig \cdot r_1} e^{-ig \cdot r_2}$$

$$\eta(g) = \frac{4\pi}{(2\pi)^3} \frac{1}{g^2} e^{-\frac{1}{4\alpha^2}g^2} - \frac{X_0}{(4\pi\gamma)^{3/2}} e^{-\frac{1}{4\gamma^2}g^2}$$

• g^2 singularity: Use spherical coordinates

$$d^3g = g_r^2 dg_r \sin(\phi) \, d\phi d\theta$$

• Large $g \cdot r$, even for small g:

Gauge cells

UNIVER

• Large $g \cdot r$, even for small g:

$$V_{lr}(r_1, r_2) = \int d^3g \,\eta(g) \, e^{ig \cdot r_1} e^{-ig \cdot r_2}$$

• Introduce a grid of gauge points

•	R ₁ ●Q ₁	●	•	●
•	•	●	•	●
•	•	•	•	Q ₂ • r ₂
•	•	•	•	•

$$(e^{ig \cdot r_1} - e^{ig \cdot Q_1}) + e^{ig \cdot Q_1}$$

• r is never very far from q

$$r_1 = Q_1 + x$$
$$e^{ig \cdot Q_1} (e^{ig \cdot x} - 1)$$

Rapid Slow

Regularized long-range potential

UNIVER

$$\begin{split} V_{lr}(r_1, r_2) &= \int d^3g \,\eta(g) \, (e^{ig \cdot r_1} - e^{ig \cdot Q_1}) (e^{-ig \cdot r_2} - e^{-ig \cdot Q_2}) \\ &+ \int d^3g \,\eta(g) \, (e^{ig \cdot r_1} - e^{ig \cdot Q_1}) \, e^{ig \cdot Q_2} \\ &+ \int d^3g \,\eta(g) \, (e^{-ig \cdot r_2} - e^{-ig \cdot Q_2}) \, e^{ig \cdot Q_1} \\ &+ \int d^3g \,\eta(g) \, e^{-ig \cdot Q_2} e^{ig \cdot Q_1} \end{split}$$

 $V_{lr}(r_1, r_2) = V_{Rlr}(r_1, r_2) + V_{lr}(r_2, Q_1) + V_{lr}(r_1, Q_2) - V_{lr}(Q_1, Q_2)$

- The Regularized long-range contribution is evaluated numerically and is small
- The additional terms are evaluated analytically and are the larger contributions

Two electron long-range integrals

$$V_{lr}^{ee}(r_1, r_2) = \int d^3g \,\eta(g) \,\overline{M}_{\alpha\beta}(g) \overline{M}_{\gamma\delta}(-g) + X_{\alpha\beta}(Q_i) S_{\gamma\delta}(Q_i) + S_{\alpha\beta}(Q_i) X_{\gamma\delta}(Q_i) - S_{\alpha\beta}(Q_i) V_{lr}(|Q_i - Q_j|) S_{\gamma\delta}(Q_j)$$

$$\overline{M}_{\alpha\beta}(g) = (\alpha\beta|g) - S_{\alpha\beta}e^{ig\cdot Q}$$
$$(\alpha\beta|g) = \int d^3r_1\phi_{\alpha}(r_1)\phi_{\beta}(r_1)e^{ig\cdot r_1}$$

UNIVER

 Compact 3 index integrals (analytical Fourier transforms) with a fixed g point grid, independent of system size

$$X_{\alpha\beta}(Q)$$
 • Long range nuclear electron attraction integrals with a charge centred at Q

$$S_{\alpha\beta}(Q) = \int d^3r_1\phi_{\alpha}(r_1)\phi_{\beta}(r_1) : \text{if } \alpha, \beta \in Q_i$$

=0 : otherwise

• Overlap integrals associated with gauge centre Q

Two electron long-range integrals

OF

UNIVER

Results: C₂₈H₃₀

A LINCOP

		Analytical		Numerical		
		% Contribution	Value (Eh)	% Contribution	Value (Eh)	Error (Eh)
Fourier	NN			100.00	874.33	-4.12
	Ne			100.00	-1761.52	8.29
	J			100.00	887.13	-4.16
	К			100.00	-0.30	0.00
	Total					0.016
Multiple Gauge	NN	99.87	869.09	0.13	1.12	0.001
	Ne	99.84	-1750.50	0.16	-2.76	0.03
	J	99.83	881.47	0.17	1.51	-0.02
	К	77.06	-0.43	22.94	0.13	0.003
	Total					0.019

Total short-range contribution: NN 51.92%, Ne 71.33%, Direct Coulomb 61.89%, Exchange 99.81%

2

 g_r

3

0.0

-0.3

0

• Angular grids: Lebedev

Fixed grid (polynomial degree) **independent** of molecular size

Numerical Integration

• Two waters far apart (250A)

Y OF

UNIVERS

LR Fock Matrix Construction

$$J_{\mu
u} = \sum_{g} \overline{M}_{\mu
u}(g) \sum_{\sigma\tau} \overline{M}_{\sigma\tau}(g) D_{\sigma\tau}$$
 + Analytical

 \mathbf{O}

UNIVERSITY

$$K_{\mu\nu} = \sum_{g,\sigma\tau} \bar{M}_{\mu\tau}(g) D_{\sigma\tau} \bar{M}_{\sigma\nu}(-g) + \sum_{i} S_{\mu\tau}(Q_i) D_{\sigma\tau} X_{\sigma\nu}(Q_i) + \sum_{i} X_{\mu\tau}(Q_i) S_{\sigma\nu}(Q_i) D_{\sigma\tau} - \sum_{i} S_{\mu\tau}(Q_i) D_{\sigma\tau} S_{\sigma\nu}(Q_i) V_{lr}(|Q_i - Q_j|)$$

Contract over the sparse terms first

Qiming Sun

Dr. Marcel Nooijen Mark Zanon

N OF

UNIVERSITY

Bourses d'études supérieures du Canada Vanier Canada Graduate Scholarships

Results: Stretching a H₂O dimer

OF

UNIVER

- Bare Fourier, has large errors on individual terms
- Multiple gauge approach reduces numerical error