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Chemical species on a lattice

» peapods: Cep@CNTs!

» endofullerenes: Hy@Cgp2, HFQCgp3

» endofullerene peapods: DyzN@Cgg@CNTs*,
Er3N@C80@CNT55

» Why not HFOCgo@CNTs?

» Compute low-temperature properties of
polar molecules in endofullerene peapods.

1B. W. Smith et al., “Encapsulated Cgp in carbon nanotubes”, Nature 396, 323 (1998).

2K. Komatsu et al., “Encapsulation of molecular hydrogen in fullerene Cgg by organic synthesis”,
Science 307, 238—240 (2005).

3A. Krachmalnicoff et al., “The dipolar endofullerene HF@Cgg", Nature Chemistry 8, 953-957 (2016).

4H. Shiozawa et al., “Filling factor and electronic structure of DysN@Cgp filled single-wall carbon
nanotubes studied by photoemission spectroscopy”’, Phys. Rev. B 73, 205411 (2006).

5F. Fritz et al., “Nanoscale x-ray investigation of magnetic metallofullerene peapods”,
Nanotechnology 28, 435703 (2017).
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Chemical species on a lattice

La@Cg, fullerene peapods:

v
5

1R. J. Nicholls et al., “Direct imaging and chemical identification of the encapsulated metal atoms in
bimetallic endofullerene peapods”’, ACS Nano 4, 3943-3948 (2010)
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Simplified mode

» Too many degrees of freedom!
» Full analysis includes:

» translation, rotation, vibration of each molecule
» electrostatic interactions between molecules
» interactions with fullerenes, nanotube

» Simplifying assumptions:
» motion of molecule inside cage is small and slow
» molecules are linear and rigid
» dipolar interactions are dominant
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Simplified mode

» dipolar linear rotor lattice along z:

el iZ'
T R2 Z * 47reOR3 z;

IZ—JI

» removed most of the chemistry from the model,
but some still remains
» non-dimensionalized, single-parameter version:

= Zz%gzel e” iz'

1<J



Introduction Ground state properties Phase transition

» disordered configuration (g < 1):

S R S

» ordered configuration (g > 1):
P e e P e e P e
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Exact diagonalization

» Construct sparse Hamiltonian, use iterative
diagonalization to find ground state!

» Exact diagonalization does not scale well with
system size

THE JOURNAL OF CHEMICAL PHYSICS 148, 074112 (2018)

Quantifying entanglement of rotor chains using basis truncation:
Application to dipolar endofullerene peapods

Tom Halverson, Dmitri louchtchenko, and Pierre-Nicholas Roy
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3GI, Canada

(Received 2 November 2017; accepted 5 February 2018; published online 21 February 2018)

‘We propose a variational approach for the calculation of the quantum entanglement entropy of assem-
blies of rotating dipolar molecules. A basis truncation scheme based on the total angular momentum
quantum number is proposed. The method is tested on hydrogen fluoride (HF) molecules confined in

1T, Halverson et al., “Quantifying entanglement of rotor chains using basis truncation: Application
to dipolar endofullerene peapods”, Journal of Chemical Physics 148, 074112 (2018).
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Path integral Monte Carlo

» Path integral ground state (PIGS) Monte Carlo
to compute ground state properties directly

» Monte Carlo suffers from ergodicity issues

Estimation of ground state entanglement entropy for continuous rotational

degrees of freedom: a path integral replica trick approach
Tapas Sahoo, Dmitri louchtchenko, Chris M. Herdman, and Pierre-Nicholas Roy®
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada

(Dated: 20 March 2019)
Rényi entropy reveals the extent to which states of individual particles in a many-body system are entangled
to each other due to their non-local correlations. The main purpose of this study is to investigate the effect

of interaction strength on the second Rényi entropy of a many-body system as a measure of entanglement
for continuous rotational degrees of freedom. As the Rényi entropy is defined in relation to purity of states
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Density matrix renormalization group

» One-dimensional problem, so we use the density
matrix renormalization group (DMRG)

» DMRG is a very powerful tool for finding ground
states of strongly coupled condensed-matter

. . 1
Hamiltonians
Density matrix formulation for quantum renormalization [PDF] ap
groups

SR White - Physical review letters, 1992 - APS

A generalization of the numerical renormalization-group procedure used first by Wilson for the Kondo problem is
presented. It is shown that this formulation is optimal in a certain sense. As a demonstration of the effectiveness of this
approach, results from numerical real ...

¢ |Cited by 4969| Related articles &%

1S. R. White, “Density matrix formulation for quantum renormalization groups”, Phys. Rev. Lett. 69,
2863 (1992).
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Density matrix renormalization group

» Scales easily to 100 rotors?
» Rotors have infinite basis of spherical harmonics
|¢m), which we truncate at £y,

THE JOURNAL OF CHEMICAL PHYSICS 148, 134115 (2018)

Ground states of linear rotor chains via the density matrix
renormalization group

Dmitri louchtchenko and Pierre-Nicholas Roy?!
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 31 January 2018; accepted 26 March 2018; published online 4 April 2018)

In recent years, experimental techniques have enabled the creation of ultracold optical lattices of
molecules and endofullerene peapod nanomolecular assemblies. It was previously suggested that the
rotor model resulting from the placement of dipolar linear rotors in one-dimensional lattices at low
temperature has a transition between ordered and disordered phases. We use the density matrix renor-
malization group (DMRG) to compute ground states of chains of up to 100 rotors and provide further

1D. louchtchenko and P.-N. Roy, “Ground states of linear rotor chains via the density matrix
renormalization group”, Journal of Chemical Physics 148, 134115 (2018).

Summary
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Von Neumann entropy

» Schmidt decomposition:

[Yag) =D VA |ka) k)

» for a normalized state |1pap), > . A\ =1

» because 0 < A\, < 1, we can interpret this as a
probability distribution

» Shannon entropy: — 224:1 A log Ay,

von Neumann entropy: S,y = — Zgil A log A

von Neumann entropy: Sy = —Tr 0A log QA
» o4 =Trp|Yap)as]

vy
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Von Neumann entropy

P All interactions, fpax = 3, N = 8 to 144
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Von Neumann entropy

> Nearest-neighbour interactions, £y, = 1, N = 8 to 144

0.75 1.00 1.25 1.50  1.75
9
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Other properties

» Schmidt gap:! A\ — Ay
» Vanishes when dominant Schmidt coefficients
become degenerate
» Energy gap: E1 — Ey

» Vanishes when timescales diverge

» Orientational correlation: m <Zi<j é; - éj>
» Vanishes in disordered states
1G. De Chiara et al., “Entanglement spectrum, critical exponents, and order parameters in quantum

spin chains”, Physical Review Letters 109, 237208 (2012).
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Schmidt gap

P All interactions, fpax = 2, N = 8 to 144




Introduction Ground state properties Phase transition Summary
00000 00000000080 00000000000 oo

Energy gap

P All interactions, fpax = 2, N = 8 to 144

2.0 1
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Orientational correlation

P All interactions, fpax = 2, N = 8 to 144
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» 2011 PIGS Monte Carlo study by Abolins et al.!

» evidence of a second-order transition between

ordered and disordered phases:

Fig. 3 Correlation length n
extracted from exponential
decay of C(r), plotted as a
function of interaction strength,
g, for a system of 64 dipoles.
Despite the increasing error bars
for large g, a peak near g = 11.5
is clearly visible, signaling the
phase transition from a
disordered phase at low g and an
ordered phase at high g
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1B. Abolins et al., “A ground state Monte Carlo approach for studies of dipolar systems with
rotational degrees of freedom”, Journal of Low Temperature Physics 165, 249-260 (2011).
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Continuous phase transition

» In a continuous (second-order) phase transition
at g., various quantities diverge!

correlation length: &€ ~ |g — g.|™"
energy gap: AE ~ &% ~ |g — g.
Schmidt gap: A\ ~ |g — 90’6
susceptibility: x ~ |g — g.|”"

|Zl/

vvyyvyy

» Critical exponents are universall

» depend on symmetry, dimensionality
» independent of microscopic details

1g, Sachdev, Quantum phase transitions, 2nd ed. (Cambridge University Press, 2011).
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» Phase transitions are in the thermodynamic limit

» When g — g. and N — oo, a property

K(g) ~ |g — g| " has a universal scaling form:!

K(g,N) = N:K(N*(g— gc))

» Data coIIapse
> ylg, N)=N"vK(g,N)vs g:

> y(z,N) =N " K(g(z), ){SI—Vi(g—gc)r

1R. Samajdar et al., “Numerical study of the chiral Z3 quantum phase transition in one spatial
dimension”, Physical Review A 98, 023614 (2018).
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d Ising mode

Transverse fie

» Universal quantities only depend on symmetry
and dimensionality
» H has Zy symmetry (reflection along z), same
as TFIM
» Critical point of TFIM is known to be in 2D
sing universality class:*
> u=1,3=1/8 v=T/4

M. Newman and G. Barkema, Monte Carlo methods in statistical physics, (Oxford University Press:
New York, USA, 1999).
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Schmidt gap

P All interactions, fpax = 2, N = 8 to 144
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Schmidt gap

P All interactions, fpax = 2, N = 8 to 144

124

(A1 = A2)
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Schmidt gap

P All interactions, liax = 2, N = 112 to 144

1.2 4

(A1 = A2)
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P All interactions, fpax = 2, N = 8 to 144
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Orientational correlation

P All interactions, fpax = 2, N = 8 to 144
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P All interactions, liax = 2, N = 112 to 144
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» The value of the critical parameter g, is
non-universal

» In the case of all interactions and /.« = 2, we
have two estimates:

» 0.9588 from Schmidt gap
» (0.9565 from orientational correlation

» Likely not in the scaling limit at 144 rotors
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Summary

» Simple model of confined dipolar rotors exhibits
order—disorder phase transition

» Same universality class (2D Ising) as phase
transition in TFIM

» Location of critical point is roughly known

» Larger finite size calculations necessary for
complete data collapse
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